Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros








Intervalo de ano
1.
Acta Pharmaceutica Sinica ; (12): 119-134, 2024.
Artigo em Chinês | WPRIM | ID: wpr-1005447

RESUMO

The purpose of this study was to explore the improving effect of Anshen Dingzhi Prescription (ADP) on Alzheimer's disease (AD)-like behavior in mice and its mechanisms. The main chemical components of ADP were identified by ultra performance liquid chromatography-time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The AD-like mouse model was induced by D-galactose (D-gal) combined with Aβ1-42 oligomer (AβO). The effect of ADP on AD-like behavior in mice was assessed using various behavioral experiments; pathomorphological changes in mouse hippocampal tissue were observed by Nissl staining and transmission electron microscopy; ELISA was used in the assessment of oxidative stress factors and inflammation-related factor levels; Western blot was performed to detect the expression of Aβ, Tau and glial fibrillary acidic protein (GFAP) proteins. The active components of ADP were screened according to TCMSP and HERB database, and the action targets of active components were predicted by Swiss Target Prediction platform. In addition, the targets of AD were predicted through DisGeNET database. Further, GO and KEGG enrichment analysis of common targets was carried out by Metascape database. Combined with the results of GO and KEGG analysis, in vivo experiments were carried out to explore the potential mechanism of ADP improving AD-like behavior in mice from the PI3K/Akt, calcium signal pathway and synaptic function. Finally, the core components of ADP were molecularly docked to the validated targets using Autodock Vina. Animal experiments were approved by the Animal Ethics Committee of Anhui University of Chinese Medicine (approval number: AHUCM-mouse-2021080). The results showed that the five chemical components, including ginsenoside Rg1, ginsenoside Rb1, tenuifolin, poricoic acid B and α-asarone were found in the ADP. ADP significantly improved the anxiety-like behavior and memory impairment, protected hippocampal neurons, decreased the levels of oxidative stress and inflammation, and inhibited the expression of Aβ and p-Tau induced by D-galactose combined with AβO in mice. The results of network pharmacology suggested that PI3K/Akt, calcium signal pathway and cell components related to postsynaptic membrane might be the key factors for ADP to improve AD. Animal experiments revealed that ADP up-regulated N-methyl-D-aspartate receptor 2A (GluN2A), postsynaptic density protein 95 (PSD95), calpain-1, phosphorylated protein kinase B (p-Akt), phosphorylated cAMP response element binding protein (p-CREB), brain-derived neurotrophic factor (BDNF) expression and inhibited p-GluN2B and calpain-2 expression in the hippocampus of AD-like mice. The molecular docking results demonstrated that the core components of ADP, such as panaxacol, dehydroeburicoic acid, deoxyharringtonine, etc. had a high binding ability with the validated targets GRIN2A, GRIN2B, PSD95, etc. In summary, our results indicate ADP improves AD-like pathological and behavioral changes induced by D-galactose combined with AβO in mice, and the mechanism might be related to the NMDAR/calpain axis and Akt/CREB/BDNF pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA